Page Content
Tanja Hagemann, M.Sc.
[1]
- © Tanja Hagemann
Tanja Hagemann is an external research assistant and PhD candidate at Service-centric Networking. In 2016 she achieved her Master's degree in mathematics at Wuppertal University with a focus on stochastic processes and multi-dimensional, complex analysis.
Besides her studies she gained versatile experience in data science and applied statistics during projects in a market research institute, at DLR Neustrelitz and at Wuppertal Institute for Climate, Environment and Energy.
At SNET she is responsible for the research project ALMA [2] which aims to improve the maintenance of cloud-based infrastructures through machine learning and deep learning. Her further research is in cooperation with T-Labs in the area of Future Networks & AI [3], where she is involved in the research and development of machine learning solutions for Deutsche Telekom.
Research Interests
- Data Science
- Machine Learning
- Deep Learning
- Anomaly Detection
- Statistical Learning Theory
- Applied Statistics
- Probability Theory
- Stochastic Analysis
Supervised Theses
- Danker, J. (2019). Analysis of LTE cell outages simulated with ns3. Bachelor Thesis, Technische Universität Berlin [4]
- Henneberg, P. (2019). InfoGAN Disentanlement Framework. Bachelor Thesis, Technische Universität Berlin [5]
- Rezeul, P. (2019). Natural Language Processing for System Log Analysis. Master Thesis, Technische Universität Berlin [6]
- Shekhawat, D. (2019). Sentiment Analysis for Product Reviews Using Machine Learning. Master Thesis, Technische Universität Berlin [7]
- Lux, Z. (2018). Deep Learning for Anomaly Detection in Time Series. Master Thesis, Technische Universität Berlin [8]
- Sharkov, D. (2018). Deep Learning for Intrusion Detection. Bachelor Thesis, Technische Universität Berlin [9]
- Yang, Y. (2018). Anomaly Detection with Time Series Analysis. Master Thesis, Technische Universität Berlin [10]
Publications
Citation key | haggecco21 |
---|---|
Author | Motta, M. and Hagemann, T. and Fischer, S. and Assion, F. |
Title of Book | 2021 Genetic and Evolutionary Computation Conference Companion (GECCO ’21 Companion), accepted for publication |
Year | 2021 |
Bibtex Type of Publication | SNET Data |
Back [12]
Service-centric Networking
TEL 19
Ernst-Reuter-Platz 7
10587 Berlin
Phone: +49 30 8353-58337
Fax: +49 30 8353 58409
Contact [15]
/IMG_1158.jpg
ker_j_2019_analysis_of_lte_cell_outages_simulated_with_
ns3_bachelor_thesis_technische_universitaet_berlin/para
meter/en/font6/minhilfe/
neberg_p_2019_infogan_disentanlement_framework_bachelor
_thesis_technische_universitaet_berlin/parameter/en/fon
t6/minhilfe/
eul_p_2019_natural_language_processing_for_system_log_a
nalysis_master_thesis_technische_universitaet_berlin/pa
rameter/en/font6/minhilfe/
khawat_d_2019_sentiment_analysis_for_product_reviews_us
ing_machine_learning_master_thesis_technische_universit
aet_berlin/parameter/en/font6/minhilfe/
_z_2018_deep_learning_for_anomaly_detection_in_time_ser
ies_master_thesis_technische_universitaet_berlin/parame
ter/en/font6/minhilfe/
rkov_d_2018_deep_learning_for_intrusion_detection_bache
lor_thesis_technische_universitaet_berlin/parameter/en/
font6/minhilfe/
ng_y_2018_anomaly_detection_with_time_series_analysis_m
aster_thesis_technische_universitaet_berlin/parameter/e
n/font6/minhilfe/
emann/parameter/en/font6/minhilfe/?no_cache=1&tx_si
bibtex_pi1%5Bdownload_bibtex_uid%5D=11307823&tx_sib
ibtex_pi1%5Bcontentelement%5D=tt_content%3A942932
emann/parameter/en/font6/minhilfe/
emann/parameter/en/font6/minhilfe/?tx_sibibtex_pi1%5Bco
ntentelement%5D=tt_content%3A897156&tx_sibibtex_pi1
%5BshowUid%5D=11307824&cHash=87d9d3790af9b197976f26
248eac324c
/parameter/en/font6/minhilfe/id/181304/?no_cache=1&
ask_mail=YvZuwgAMCXnjKMr1vDYvtso7NF4eXL%2FS%2Fzj0HmZxhm
aPFpyDx%2Fd2Zg%3D%3D&ask_name=Tanja%20Hagemann%20M.
Sc.