Inhalt des Dokuments
Es gibt keine deutsche Übersetzung dieser Webseite.
Tanja Hagemann, M.Sc.
[1]
- © Tanja Hagemann
Tanja Hagemann is an external research assistant and PhD candidate at Service-centric Networking. In 2016 she achieved her Master's degree in mathematics at Wuppertal University with a focus on stochastic processes and multi-dimensional, complex analysis.
Besides her studies she gained versatile experience in data science and applied statistics during projects in a market research institute, at DLR Neustrelitz and at Wuppertal Institute for Climate, Environment and Energy.
At SNET she is responsible for the research project ALMA [2] which aims to improve the maintenance of cloud-based infrastructures through machine learning and deep learning. Her further research is in cooperation with T-Labs in the area of Future Networks & AI [3], where she is involved in the research and development of machine learning solutions for Deutsche Telekom.
Research Interests
- Data Science
- Machine Learning
- Deep Learning
- Anomaly Detection
- Statistical Learning Theory
- Applied Statistics
- Probability Theory
- Stochastic Analysis
Supervised Theses
- Danker, J. (2019). Analysis of LTE cell outages simulated with ns3. Bachelor Thesis, Technische Universität Berlin [4]
- Henneberg, P. (2019). InfoGAN Disentanlement Framework. Bachelor Thesis, Technische Universität Berlin [5]
- Rezeul, P. (2019). Natural Language Processing for System Log Analysis. Master Thesis, Technische Universität Berlin [6]
- Shekhawat, D. (2019). Sentiment Analysis for Product Reviews Using Machine Learning. Master Thesis, Technische Universität Berlin [7]
- Lux, Z. (2018). Deep Learning for Anomaly Detection in Time Series. Master Thesis, Technische Universität Berlin [8]
- Sharkov, D. (2018). Deep Learning for Intrusion Detection. Bachelor Thesis, Technische Universität Berlin [9]
- Yang, Y. (2018). Anomaly Detection with Time Series Analysis. Master Thesis, Technische Universität Berlin [10]
Publications
Zitatschlüssel | victor2019pumpanddump |
---|---|
Autor | Victor, F. and Hagemann, T. |
Buchtitel | 2019 IEEE International Conference on Data Mining Workshops (ICDMW) |
Seiten | 244–251 |
Jahr | 2019 |
Monat | Nov |
Typ der Publikation | SNET Data Blockchain |
Zurück [12]
Service-centric Networking
TEL 19
Ernst-Reuter-Platz 7
10587 Berlin
Phone: +49 30 8353-58337
Fax: +49 30 8353 58409
E-Mail-Anfrage [15]
/IMG_1158.jpg
ker_j_2019_analysis_of_lte_cell_outages_simulated_with_
ns3_bachelor_thesis_technische_universitaet_berlin/para
meter/de/
neberg_p_2019_infogan_disentanlement_framework_bachelor
_thesis_technische_universitaet_berlin/parameter/de/
eul_p_2019_natural_language_processing_for_system_log_a
nalysis_master_thesis_technische_universitaet_berlin/pa
rameter/de/
khawat_d_2019_sentiment_analysis_for_product_reviews_us
ing_machine_learning_master_thesis_technische_universit
aet_berlin/parameter/de/
_z_2018_deep_learning_for_anomaly_detection_in_time_ser
ies_master_thesis_technische_universitaet_berlin/parame
ter/de/
rkov_d_2018_deep_learning_for_intrusion_detection_bache
lor_thesis_technische_universitaet_berlin/parameter/de/
ng_y_2018_anomaly_detection_with_time_series_analysis_m
aster_thesis_technische_universitaet_berlin/parameter/d
e/
emann/parameter/de/?no_cache=1&tx_sibibtex_pi1%5Bdo
wnload_bibtex_uid%5D=11307552&tx_sibibtex_pi1%5Bcon
tentelement%5D=tt_content%3A942932
emann/parameter/de/
emann/parameter/de/?tx_sibibtex_pi1%5Bcontentelement%5D
=tt_content%3A897156&tx_sibibtex_pi1%5BshowUid%5D=1
1307824&cHash=c12651c81daef217b3c1cb29e03417f4
anfrage/parameter/de/id/181304/?no_cache=1&ask_mail
=YvZniQAJ1Ro4qPfiEPf2VdPAnEbt72C6hXoD54ocBzVZ1YOeBKo6rA
%3D%3D&ask_name=Tanja%20Hagemann%20M.Sc.