Inhalt des Dokuments
Katerina Katsarou
[1]
- © Katerina Katsarou
Katerina Katsarou received her Diploma from the Department of Electrical and Computer Engineering-Polytechnic School of University of Patras and her Master's Degree in Computer Science from University of Ioannina.
During her graduate studies she attended courses in the field of Data Mining, Statistical Algorithms for Medical Applications and Advanced Topics in Relational Databases. She participated in research projects in the Department of Computer Technology and Informatics of University of Patras and was a lab assistant in the Department of Computer Science and Engineering of University of Ioannina.
In January 2018, she joined the Service-centric Networking group of Prof. Dr. Axel Küpper at Telekom Innovation Laboratories as a research scientist in the field of data science and machine learning.
Research Interests & Awards
[2]
- © ISNCC 2020
- Sentiment Analysis
- Context-aware Recommender Systems
- Deep Learning
- Stock market and Cryptocurrency prices forecasting
- Community detection in online social networks
- R, Python, SQL
Supervised Theses
- Hurair Hashimi, S.M. (2020). A hybrid approach to stock market predictive analysis based on microservices architecture. Master Thesis, Technische Universität Berlin [12]
- Jeney, R. (2020). Multi-Domain Sentiment Classification using an LSTM-based Framework with Attention Mechanism. Master Thesis, Technische Universität Berlin [13]
- Winata, I. (2020). A Machine Learning-based Mechanism for Feature Extraction for CDSA. Master Thesis, Technische Universität Berlin [14]
- Sunder, S. (2020). Sentiment Polarization in Online Social Networks: The Flow of Hatespeech. Master Thesis, Technische Universität Berlin [15]
- Yu, G. (2019). Predicting the next App based on Smartphone Data. Master Thesis, Technische Universität Berlin [16]
- Mai, J. (2019). A hybrid approach for emotion-based sentiment analysis for Twitter data. Bachelor Thesis, Technische Universität Berlin [17]
- Dhakal, U. (2019). Cross-domain sentiment analytics using a Deep learning approach. Bachelor Thesis, Technische Universität Berlin [18]
- Shekhawat, D. (2019). Sentiment Analysis for Product Reviews Using Machine Learning. Master Thesis, Technische Universität Berlin [19]
Service-centric Networking
TEL 19
Ernst-Reuter-Platz 7
10587 Berlin
Phone: +49 30 8353 58149
Fax: +49 30 8353 58409
Contact [21]
/katerina-katsarou-.jpg
ts/ISNCC_2020_Best_Paper_Award.pdf
atsarou/parameter/minhilfe/?cHash=8cf7f943b2ed1a7fbb108
411660ceb10&type=1&tx_sibibtex_pi1%5Bsort%5D=au
thor%3A0
atsarou/parameter/minhilfe/?cHash=e5c4cb6576e47ed46f8e1
67e73e950a2&type=1&tx_sibibtex_pi1%5Bsort%5D=ye
ar%3A0
atsarou/parameter/minhilfe/?cHash=c2c7de713ccde8f09cbbd
3a514f68012&type=1&tx_sibibtex_pi1%5Bsort%5D=jo
urnal%3A0
atsarou/parameter/minhilfe/?tx_sibibtex_pi1%5Bcontentel
ement%5D=tt_content%3A828917&tx_sibibtex_pi1%5Bshow
Uid%5D=11307803&cHash=ebc7c4bbbc9035532c68f05337c9c
7ff
atsarou/parameter/minhilfe/?tx_sibibtex_pi1%5Bcontentel
ement%5D=tt_content%3A828917&tx_sibibtex_pi1%5Bshow
Uid%5D=11307804&cHash=65aa4e2d6c50c15d4cd0c3d2c6de8
ad6
atsarou/parameter/minhilfe/?tx_sibibtex_pi1%5Bcontentel
ement%5D=tt_content%3A828917&tx_sibibtex_pi1%5Bshow
Uid%5D=11307808&cHash=6d09a9425762d9fed4ba052b9ac11
def
atsarou/parameter/minhilfe/?tx_sibibtex_pi1%5Bcontentel
ement%5D=tt_content%3A828917&tx_sibibtex_pi1%5Bshow
Uid%5D=11307815&cHash=107aec723aa7ba077d7c4062925c1
3f4
katsarou/parameter/minhilfe/?tx_sibibtex_pi1%5Bcontente
lement%5D=tt_content%3A828917&tx_sibibtex_pi1%5Bsho
wUid%5D=11307553&cHash=7b398768aa288206df5bc4c658ca
0f59
katsarou/parameter/minhilfe/?tx_sibibtex_pi1%5Bcontente
lement%5D=tt_content%3A828917&tx_sibibtex_pi1%5Bsho
wUid%5D=11307556&cHash=d6fb50123103b1303110b7fae04a
d24d
rair_hashimi_sm_2020_a_hybrid_approach_to_stock_market_
predictive_analysis_based_on_microservices_architecture
_master_thesis_technische_universitaet_berlin/parameter
/minhilfe/
ney_r_2020_multi_domain_sentiment_classification_using_
an_lstm_based_framework_with_attention_mechanism_master
_thesis_technische_universitaet_berlin/parameter/minhil
fe/
nata_i_2020_a_machine_learning_based_mechanism_for_feat
ure_extraction_for_cdsa_master_thesis_technische_univer
sitaet_berlin/parameter/minhilfe/
nder_s_2020_sentiment_polarization_in_online_social_net
works_the_flow_of_hatespeech_master_thesis_technische_u
niversitaet_berlin/parameter/minhilfe/
_g_2019_predicting_the_next_app_based_on_smartphone_dat
a_master_thesis_technische_universitaet_berlin/paramete
r/minhilfe/
i_j_2019_a_hybrid_approach_for_emotion_based_sentiment_
analysis_for_twitter_data_bachelor_thesis_technische_un
iversitaet_berlin/parameter/minhilfe/
akal_u_2019_cross_domain_sentiment_analytics_using_a_de
ep_learning_approach_bachelor_thesis_technische_univers
itaet_berlin/parameter/minhilfe/
ekhawat_d_2019_sentiment_analysis_for_product_reviews_u
sing_machine_learning_master_thesis_technische_universi
taet_berlin/parameter/minhilfe/
/parameter/en/minhilfe/id/191499/?no_cache=1&ask_ma
il=Yv1qJgAOlxjBNnLKR4yAv3hAx9sczHBERdHMag%2FP2ns%3D&
;ask_name=Katerina%20Katsarou%20