
Continuous Integration and Testing for Android
Michael Geiss (315702)

Berlin Institute of Technology (TU-Berlin)
June 22, 2012

Abstract—Developing software projects gets more complex
every day due to an increase of tools, libraries and techniques
used in current software development processes. An example is
the creation of an Android application that is based on Java
development with several extensions in terms of mobile opti-
mization and security. In addition to the scope a project is being
implemented by several developers to compensate the knowledge
needed for this complexity. However, this causes an increase of
problems when integrating the software in the roll-out phase,
since all the different artifacts and source code modules need to
be combined and merged. In order to improve this process Martin
Fowler coined the term Continuous Integration in 1999 and
provided a set of best practices to reduce upcoming problems and
decrease the time spend for finding bugs and errors in software
projects. To seriously apply Continuous Integration there are
tools to support this process, i.e. Jenkins or CruiseControl. This
paper deals with the presentation of the core artifacts and further
features given by these tools and describes in what way they can
be applied in general and in particular to the Android build
process.

I. INTRODUCTION

A lot of software projects are too complex to be developed
by one or two developers but they require at least 5 to 10
of them. This is due to, inter alia, the scope and variety of
technologies applied. Although there are several techniques to
support the development of team projects (i.e. modularization
of software), the integration process of the software gets
more complex with each programmer. Possible reasons are
the developers using different operating systems, IDEs or
another setup of the project environment. Furthermore their
source code might make use of different versions of dependent
libraries or software, resulting in alternating behavior of the
software project on each developer’s machine. The same
problem is likely to occur in case a developer uses an obsolete
version of certain parts of the project. That makes tracking
down errors very complicated especially when the all the
source code parts are integrated almost at the end of the
project. By then the origin of failure is very difficult to be
spotted.

Testing software is an important issue within a software
development process as well. A lot of developers write their
own tests to only verify the functionality of their own modules.
However, a lot of problems occur on the border to other
modules or when trying to run the project as a whole. Therefor
using these personal tests for the whole project is insufficient.
Another disadvantage of manual testing is it requiring the user
to execute tests by hand. This takes a lot of time and can
become very annoying.

Another troublesome aspect is the build process of a

software project itself. This process can turn out to be quite
complex and its manual execution will lead to a lot of
inconvenient actions that need to be performed in order to
build project as a whole.

The difficulties mentioned so far can be prevented by fol-
lowing the Continuous Integration paradigm, whose practices
are described in section II. To support this process there are
several tools available. They are covered in section III and
their generic components are being abstracted. An example
that applies to the first three paragraphs in terms of complexity
and testing is an android application. Its build process has quite
a large scope and requires several steps from its compilation
to deploying this application. Due to the use of Java it
is also common to divide the project into several modules
that need to be tested both individually and as a whole.
Therefor this paper deals with the application of CI tools for
Android projects in general in section IV. This also includes
describing the Android build process in section IV-A. The last
section concludes this paper and gives an outlook on current
progresses in terms of Continuous Integration.

II. CONTINUOUS INTEGRATION

The Problems mentioned in section I exist since the begin-
nings of software development. Even though there were some
approaches to deal with these difficulties according to [1] it
was an article written by Martin Fowler1 that publicly dis-
cussed this problem. According to [2] Continuous Integration
(CI) is

”[. . . ] a software development practice where members of a
team integrate their work frequently [. . . ] Each integration is

verified by an automated build (including test) to detect
integration errors as quickly as possible [. . . ]”

In his blog, Martin Fowler illustrates several of these best
practices that deal with the integration problems described in
section I. The following subsections II-A to II-K provide an
overview of these approaches according to [2] and [3] that
formerly introduced this topic.

A. Maintain a Single Source Repository

Working on larger software development projects includes
dealing with a lot of files i.e. source code, pictures, configura-
tions and libraries. Since they change over time and might be
altered by different developers it becomes difficult to always

1Continuous Integration: http://www.martinfowler.com/articles/
continuousIntegration.html, last accessed: June 2, 2012

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html


work on the current version of the project. Version control
systems i.e. SVN, Git or CVS simplify this process by creating
a single source repository that contains the current version of
all parts of the project. This way the developers do not have to
move the updated files around via obsolete technologies (i.e.
email, USB-Stick, or network shared folders) but they only
need to update/commit the sources from and to this repository.
All commits are and resulting versions are logged and can
be reverted. Every single version (so called revisions) of a
software project can be tested. Thus, finding errors in a project
is far more easy and comfortable by checking since which
revision or change an error started occurring.

B. Automate the Build

Building a software development project often is a complex
process involving i.e. compilation, downloading dependencies,
creating and moving elements in the directory structure or
loading schemes into a database. To not risk making mistakes
performing these actions the build process can be automated
by using build-tools like make, ant, maven or MSBuild. They
enable a system or user to build and launch a system using a
single command to start the corresponding build-tool script.
This method also saves time in comparison to the manual
execution of a build process.

C. Make your Build Self-Testing

A common approach in software development is Test Driven
Development [4]. It proposes the principle to write test sce-
narios for software before implementing the software itself.
That way the developer is more aware of the final functions
of the product. The test scenarios can also be used as a task
list. In terms of Continuous Integration these tests should be
automated and executed every time the project is build. This
enables the developer to early see whether his latest code
produces errors and in what degree the current version meets
the requirements specified by the test cases.

D. Everyone Commits To the Mainline Every Day

For the integration process it is important to grasp the
dependencies between the different project modules. Often
there are dependencies that create errors due to a wrong
defined specification or interface. To detect problems between
the codes of different users as soon as possible it is essential
for the developers to commit their implementations regularly,
at least once a day. This way, all developers can use the current
code of the others which reduces errors. Furthermore, the
system is able to test the project as a whole and thus reveals
problems more quickly.

E. Every Commit Should Build the Mainline on an Integration
Machine

To prevent developers from working on a faulty version
of the project, each commit to the repository should be built
and tested on an integration machine. If a commit produces
errors the developer is informed to fix this problem. Once the
new code builds without any failures the commit is marked as
successful and can be checked out by others.

F. Keep the Build Fast

To get a quick feedback on the state of the current build the
results from each new commit should the developer as soon
as possible. According to [2]

”[. . . ] a ten minute build is perfectly within reason.”

In general the build process consists of downloading depen-
dencies, compiling the code, and testing it. The optimization of
the former is quite difficult. Moreover, running the tests to the
software requires most of the build time and that is where an
optimization is more useful. Therefor the test scenarios have
to be split. The first test unit consists of local unit tests that run
quite fast. The second test unit includes larger tests i.e. scaled
tests or working with external databases. When building the
software the first test unit will be launched right after building
on the same machine. However, the second unit needs to be
tested on an alternative machine, so that the main server is still
available for other user’s tests. The developers commit might
be approved after a successful run of the first test unit even
though the second test could produce errors. This trade off in
terms of a correct commit and the notification of the user is
worth to be considered.

G. Test in a Clone of the Production Environment

In general, rolling out the software to the production en-
vironment results in several problems. They originate from
the differences between test environment and production envi-
ronment. To reduce these problems test environment should
be created that is as equal as possible to the production
environment. Every aspect that is different could result in an
error while rolling out the software project, and the more
errors need to be fixed later on. Fixing these might take
a lot of time that could be saved. Another problem is that
due to differences between test environment and production
environment, corresponding automated tests might not work
in the latter one which results in manual verification that
consumes more time.

H. Make it Easy for Anyone to Get the Latest Executable

Often the executables are not only needed by developers,
but by colleagues that want to present the current state to
customers or investors. It could also be used for presenting
certain features to get a feedback on them. Therefor it is
important that the latest executable is stored at a well-known
location. This will prevent time wasting search actions and
result in faster feedback.

I. Everyone can see what’s happening

Communicating the state of the main build line is one of
the most important things. That could include displaying the
current condition of the build process with corresponding error
logs but also statistics on the error rate in commits by a certain
developer. The information on the state is essential for tracking
problems or keeping track of the progress made over a certain
period.



J. Automate Deployment

Continuous Integration involves working with different en-
vironments. As described in section II-F two or more test
environments are reasonable. Therefor the executable needs
to be moved to different locations in order to be tested. When
having developers that are very eager to commit every hour a
day, each time a new test suite is to be run which makes it
reasonable to automate the deployment.

K. Benefits of Continuous Integration

In [2] Fowler states, that the ”[. . . ] most wide ranging
benefit of Continuous Integration is reduced risk”. That aspect
is true for Continuous Integration providing practices that help
to detect integration problems very fast. This prevents from
”last-minute hiatus before release dates” [5]. It is not only
the the reduced risk, but also automating several steps in the
build process including the test suite that make these best
practices attractive to developers and time saving. Developers
also profit from early warnings concerning broken code and
especially conflicting changes. In case of errors it is now more
easy to ” [. . . ] revert the code-base back to a bug-free state
without wasting time debugging” [5]. For project managers
the CI techniques provide a comfortable way to keep track of
the project and detect bottlenecks in the development process.

III. CONTINUOUS INTEGRATION TOOLS

To support the Continuous Integration process there are
several tools that try to internalize the different practices in
it. To demonstrate the elements needed Figure 1 summarizes
the CI practices in a process and depicts the essential artifacts
that can be adopted from section II. The Developer commits
the newest version of his source-code to a Version Control
System. In parallel, the CI-Server regularly checks for updates
on the Version Control System. If there is a newer version
of the source-code available it is checked out by the CI-
Server. Now the project is being built by a Build-Tool that
is executed by the server returning its results back to the CI-
Server where they are evaluated. This information is now put
on the CI-Servers Webpage to inform the Developer about the
current condition of the project and whether his commit was
successful or included errors.

Figure 1. Continuous Integration Tool - Generic Structure based on [1]

In summary, the most important artifacts that CI-Tools need
to have in order to enforce the CI practices are given in the
following enumeration [6], [5], [1]:

• Version Control System (i.e. CVS, Subversion, or Git)
• Build Tool (i.e. Ant, Maven, MSBuild)
• Support for programming languages or frameworks (i.e.

Java, .Net, Android SDK)
• UI for build information
• Notification System (i.e. UI or email)
According to [6], [5], [1] the most common tools are Hud-

son/Jenkins, CruiseControl, and Apache’s Continuum. They all
couple the requirements mentioned above and are suitable for
working on software projects. Despite their support for these
features, some of their differences and characteristics will be
described in the following paragraphs:

CruiseControl2 – CruiseControl is one of the oldest tools
around. Still it only offers configuring it via a XML-file. The
language support focuses on Java, but can be extended to i.e.
.NET via plug-in.

Apache’s Continuum3 – Continuum is a tool that is mainly
for Java developers. In relation to CruiseControl it has quite
a short learn curve [5] and it is the only tool offering a role
based security. This feature is for setting up which users can
have access to certain parts of the project.

Jenkins/Hudson4 – Jenkins is a fork of Hudson [1], so
they use a common base. A comparison of these tools is
given in [7]. Both are quite new in the Continuous Integration
area. However, they provide a comfortable UI that allows
configuring the tools and setting up projects. This makes them
both more attractive to new users, as well as the fact that its
learn curve is like Continuum’s quite short [5]. Jenkins’ and
Hudson’s architecture is plug-in based. Therefor both are easy
to extend i.e. in matter of supported languages, build tools and
version control systems.

There are further CI tools that can be compared i.e. in [8].

IV. APPLY JENKINS FOR ANDROID PROJECTS

This section is to demonstrate in what way CI tools support
the Continuous Integration process. Specifically, Continuous
Integration is to be applied to the Android build process
which is first going to be introduced. The tool of choice for
supporting Android is Jenkins.

A. Android Build Process

The Android build process is depicted in Figure 2 and
involves several steps of compilation and generation to finally
create the .apk file. This one then can be run under an android
device or emulator.

According to [9] the build process is based on a Java
build process. Its extension includes compiling the application
resource files and generating an R.java component to be able
to access the resources in Java. This process is done by the

2http://cruisecontrol.sourceforge.net/, last accessed: June 08, 2012
3http://continuum.apache.org/, last accessed: June 08, 2012
4https://hudson.dev.java.net/, last accessed: June 08, 2012

http://cruisecontrol.sourceforge.net/
http://continuum.apache.org/
https://hudson.dev.java.net/


Figure 2. Android Build Process [9]

Android Asset Packaging Tool (aapt). Another tool that was
added to Java’s build process is the conversion of Android
specific interfaces (created with Android Interface Definition
Language – AIDL) into Java interfaces. The two new artifacts
are now combined with the sources and the Java compiler
generates the binaries. In a further step these .class files are
now being optimized for mobile devices by converting into
Dalvic code (.dex files). This step involves integrating 3rd
party libraries that were used creating the application. The
next step in this build process is to create the .apk combining
the .dex files and all non-compiled resources i.e. configuration
files or images. Afterwards the .apk has to be signed to be
able installing it on a device. For that either a debug key
or a release key can be used, where the debug key is only
for test purposes the release key for rolling the application
out on Google’s market. The effect of this altered process is
being discussed in the following subsection when describing
the build management tools.

B. Jenkins Supports the Android Build Process

To support the Android build process with a Continuous
Integration tool, this work focused on Jenkins. It offers an
easy to use interface and several plug-ins that contribute to
the Android build process and its integration. Therefor the
path to the Android SDK is required which can be entered
via the UI. Alternatively, Jenkins can be set-up to download
and use the specific SDK version needed by the project.

For getting the source code Jenkins provides Version
Control System plug-ins for i.e. Git5, Subversion6 or CVS7

and can be configured to check the repository for update in
certain intervals. The build process can be timed in certain
intervals as well, and Jenkins provides the possibility to build
the code each time a developer commits to the repository.

In terms of Build Management the focus lies on Ant8 or
Maven9. The UI even offers to download the latest version
of each tool which reduces the costs of configuring it.
However, when preparing the production environment with
a certain version Jenkins allows the user to set the latter
one up as well. Section IV-A pointed out, that there are
several ways a build process can be extended. Therefor it
is important that the Continuous Integration tool is also
able to handle these adaptations. In general this support
can be managed by including certain plug-ins into the build
management tool. This also applies to both Maven and Ant.
Using one of these build tools the whole process depicted
in Figure 2 can be automated. One feature that needs to be
added via plug-in, for example, is the signing of .apk files [10].

To support Automated Tests Jenkins can be extended
via plug-ins. JUnit10 is available for default Android tests
according to [11] but also XUnit tests [12] in case the
Android Application was written in NDK. Jenkins can
provide a graphical presentation of the test results as depicted
in Figure 3 illustrating the failed test cases and the total
number of test cases for each build. Jenkins also informs the
user which tests exactly caused problems. JUnit for Android
differs a little bit from the JUnit for Java. Thus, it is also
possible to perform tests on UI elements with the Android
version of this test suite. On the other hand this requires
the user to include an Android emulator so the UI tests
can be properly performed. This is probably one of Jenkins
most advanced features, integrating such a plug-in. Without
using an emulator it is not possible to access any Android
classes [13]. Next to JUnit there are further test suites that
can be integrated in this Continuous Integration tool to serve
different user’s needs. Monkey is a command line tool that is
used for performing stress tests on an Android application by

5http://git-scm.com/, last accessed: June 08, 2012
6http://subversion.tigris.org/, last accessed: June 08, 2012
7http://savannah.nongnu.org/projects/cvs/, last accessed: June08, 2012
8http://ant.apache.org/, last accessed: June 08, 2012
9http://maven.apache.org/, last accessed: June 08, 2012
10http://www.junit.org/, last accessed: June 08, 2012

http://git-scm.com/
http://subversion.tigris.org/
http://savannah.nongnu.org/projects/cvs/
http://ant.apache.org/
http://maven.apache.org/
http://www.junit.org/


sending random requests to a device [13] [14]. Jenkins not
only integrates this tool but also publishes its results. Another
tool that can be integrated in this Continuous Integration
tool is Robotium11 which is an adaptation of Selenium12 for
Android. It provides black box tests that let the user verify
UI elements and its actions. Its results can be graphically
displayed in the Jenkins UI as well. In addition to these test
suites Jenkins allows using shell scripts and installing or
uninstalling certain Android packages for test purposes which
makes the tool very powerful and neat in terms of testing
Android applications.

Figure 3. Jenkins UI - Project Trends

As a Continuous Integration tool Jenkins also provides
different methods to visualize the current state of a project and
its build process. First of all it depicts in what degree the last
couple builds were successful. Additionally the corresponding
console output can be displayed to evaluate and track occurring
errors. Another feature offered by Jenkins is showing all the
previous builds in a calendar as shown in Figure 3 as well as
some further information. This gives the user an overall view
about the whole project. Information on builds can be obtained
via mail or rss-feed as well.

V. CONCLUSION AND OUTLOOK

In summary Continuous Integration provides several
techniques that help improving and optimizing the
development of software. They can make the development
more rapid by automating a lot of processes and reduce the
need for debugging. Since there are already established best
practices the developers should be encouraged to make use
of Continuous Integration.

This topic also contributes to current research topics. One
approach is Continuous Delivery [15] [16] that makes use
of the Continuous Integration practices. Its idea is to rapidly
develop small features which are then presented to a customer.
That way the customer’s feedback can fast be integrated in
the software project which allows shorter development cycles.

11http://code.google.com/p/robotium/, last accessed: June 08, 2012
12http://seleniumhq.org/, last accessed: June 08, 2012

This approach reminds of practices performed in Extreme
Programming [17] projects.

Another current issue to Continuous Integration is its ex-
tension with Cloud Computing or Virtualization [1]. This
approach allows parallelizing different steps in the build pro-
cess. Especially automated tests could benefit from this when
applying the practices in section II-F where the second unit
tests could be performed in parallel to the first unit tests. That
way the build process would be executed more quickly and the
developers could be notified about the state of their commit
even timelier.

REFERENCES

[1] B. Feustel and S. Schluff, “Continuous integration in zeiten agiler
programmierung,” 02 2012, http://www.heise.de/developer/artikel/
Continuous-Integration-in-Zeiten-agiler-Programmierung-1427092.
html, last accessed: June 19, 2012.

[2] M. Fowler and M. Foemmel, “Continuous integration, http://
martinfowler.com/articles/continuousIntegration.html,” 2005.

[3] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk, 1st ed. Addison-Wesley Profes-
sional, 2007.

[4] D. Astels, Test Driven development: A Practical Guide. Prentice Hall
Professional Technical Reference, 2003.

[5] V. Kofman, “The best continuous integration tools,” 01
2009, http://www.developer.com/open/article.php/3803646/
The-Best-Continuous-Integration-Tools.htm, last accessed: June
19, 2012.

[6] J. F. Smart, “Which open source ci tool is best suited for your appli-
cation’s environment?” JavaWorld.com, 11 2006, http://www.javaworld.
com/javaworld/jw-11-2006/jw-1101-ci.html, last accessed: June 19,
2012.

[7] B. Bickel, “Jenkins vs. hudson - time to upgrade,” bob-
bickel.blogspot.de, 03 2011, http://bobbickel.blogspot.de/2011/03/
jenkins-vs-hudson-time-to-upgrade.html, last accessed: June 19, 2012.

[8] M. D. Laudato, “Comparing continuous integration tools,”
technistas.com, 06 2010, http://technistas.com/2010/06/07/
comparing-continuous-integration-tools-part-1/, last accessed: June 19,
2012.

[9] “Building and running,” http://developer.android.com/, 06 2012, http:
//developer.android.com/guide/developing/building/index.html, last ac-
cessed: June 19, 2012.

[10] “Signing your applications,” http://developer.android.com/, 06 2012,
http://developer.android.com/guide/publishing/app-signing.html, last ac-
cessed: June 19, 2012.

[11] “Testing fundamentals,” http://developer.android.com/, 06 2012, http://
developer.android.com/guide/topics/testing/testing android.html, last ac-
cessed: June 19, 2012.

[12] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[13] L. Vogel, “Android testing with the android test framework, robotium,
monkey and robolectric,” http://www.vogella.com/, 03 2012, http://www.
vogella.com/articles/AndroidTesting/article.html, last accessed: June 21,
2012.

[14] “Ui/application exerciser monkey,” http://developer.android.com/, 06
2012, http://developer.android.com/guide/developing/tools/monkey.html,
last accessed: June 19, 2012.

[15] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, ser.
The Addison-Wesley Signature Series. Addison-Wesley, 2010,
http://www.informit.com/articles/article.aspx?p=1829417, last accessed:
June 19, 2012. [Online]. Available: http://books.google.de/books?id=
6ADDuzere-YC

[16] J. Humble, “Continuous delivery vs continuous deployment,”
http://continuousdelivery.com, 08 2010, http://continuousdelivery.
com/2010/08/continuous-delivery-vs-continuous-deployment/, last
accessed: June 19, 2012.

[17] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

http://code.google.com/p/robotium/
http://seleniumhq.org/
http://www.heise.de/developer/artikel/Continuous-Integration-in-Zeiten-agiler-Programmierung-1427092.html
http://www.heise.de/developer/artikel/Continuous-Integration-in-Zeiten-agiler-Programmierung-1427092.html
http://www.heise.de/developer/artikel/Continuous-Integration-in-Zeiten-agiler-Programmierung-1427092.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.developer.com/open/article.php/3803646/The-Best-Continuous-Integration-Tools.htm
http://www.developer.com/open/article.php/3803646/The-Best-Continuous-Integration-Tools.htm
http://www.javaworld.com/javaworld/jw-11-2006/jw-1101-ci.html
http://www.javaworld.com/javaworld/jw-11-2006/jw-1101-ci.html
http://bobbickel.blogspot.de/2011/03/jenkins-vs-hudson-time-to-upgrade.html
http://bobbickel.blogspot.de/2011/03/jenkins-vs-hudson-time-to-upgrade.html
http://technistas.com/2010/06/07/comparing-continuous-integration-tools-part-1/
http://technistas.com/2010/06/07/comparing-continuous-integration-tools-part-1/
http://developer.android.com/guide/developing/building/index.html
http://developer.android.com/guide/developing/building/index.html
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/topics/testing/testing_android.html
http://developer.android.com/guide/topics/testing/testing_android.html
http://www.vogella.com/
http://www.vogella.com/articles/AndroidTesting/article.html
http://www.vogella.com/articles/AndroidTesting/article.html
http://developer.android.com/guide/developing/tools/monkey.html
http://www.informit.com/articles/article.aspx?p=1829417
http://books.google.de/books?id=6ADDuzere-YC
http://books.google.de/books?id=6ADDuzere-YC
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/

	Introduction
	Continuous Integration
	Maintain a Single Source Repository
	Automate the Build
	Make your Build Self-Testing
	Everyone Commits To the Mainline Every Day
	Every Commit Should Build the Mainline on an Integration Machine
	Keep the Build Fast
	Test in a Clone of the Production Environment
	Make it Easy for Anyone to Get the Latest Executable
	Everyone can see what's happening
	Automate Deployment
	Benefits of Continuous Integration

	Continuous Integration Tools
	Apply Jenkins for Android Projects
	Android Build Process
	Jenkins Supports the Android Build Process

	Conclusion and Outlook
	References

