Internet of Services

Project Introduction

Prof. Dr. Küpper, S. Göndör, M. Salem, M. Slawik, S. Zickau
D. Thatmann, A. Uzun, B. Deva, J. Devandraraj

Service-centric Networking
Telekom Innovation Laboratories and TU Berlin
Established in December 2009
Prof. Dr. Axel Küpper
Part of TU Berlin and Telekom Innovation Laboratories
Web: http://www.snet.tu-berlin.de

Research Areas
- Mobile Computing
- Context-aware Computing
- Green ICT
- Cloud Computing
- Online Social Networks
- Semantic Web & Linked Data

Other Courses
- Mobile Services (ST)
- Geschäftsprozesse und IT-Dienste (ST)
- Electronic Commerce (WT)
- Digital Communities (WT)
Project Organization (1)

• 2-4 students will work in team on a specific topic
• Teams meet regularly with the supervisor
• Working mode:
 – The project has 9 ECTS (approx. 6 SWS)
 – Project timeframe: 15 weeks
• Workload per person per week:
 – Max: 15 – 18 hours
 – Realistic: 10 – 15 hours
• Attendance to all appointments is mandatory
• Meet with your supervisor right after this meeting and discuss the further steps!
Project Organization (2)

• Project plan
 – Teams define tasks, responsibilities and estimated workload
 – Teams track the time spent on tasks
 – Teams compare plan and actual time spent learn from the under- and overestimations

• Documentation
 – Dependent on topic, est. 20 – 30 pages

• There will be a Redmine Project Management System with SVN/GIT, wiki, ticketing system, etc.
Important dates

• General division:
 – First 1/3: research, conceptual work, planning
 – Second 2/3: implementation, practical work, doing

• Intermediate presentation
 – June 3rd, 1300 – 1700, Room C 230
 – Preliminary documentation due on 10th of June
 • Includes research, concept and work planning

• Final presentation
 – July 15th, 1300 – 1700, TEL Auditorium
 – Final documentation due on 22nd of June
 • Implementation overview, plan/actual comparison, etc.
Prerequisites (in general)

• Prerequisites
 – Basic knowledge of computer science
 – Practical experience in object-oriented programming and software design

• Good to have
 – Practical experience in Web Services (Protocols and stuff)
 – Mobile Computing (especially Android)
 – Experience with IDEs (e.g. Eclipse)
 – Understanding of version control
 – Test-driven development, e.g. unit testing with Junit
 – Working with DBMS (SQL)
Assessment

• 30% documentation
• 20% presentation
• 50% implementation
Project Topics & Supervisors

• End-to-End entity-body confidentiality and integrity for HTTP (4-5 students)
 – Mathias Slawik, Dirk Thatmann

• ComGreen Movement Prediction (4 students)
 – Sebastian Göndör, Abdulbaki Uzun

• Location-based Authentication System for Cloud Services using GeoXACML (4 students)
 – Dirk Thatmann, Sebastian Zickau

• Social Networks: Friend Recommendation and Content Sharing (4 students)
 – Jeshurun Devendraraj, Sebastian Göndör

• Context-aware Personal Assistant with Linked Open Data
 – Abdulbaki Uzun, Bersant Deva

• Semantic Positioning 2: Child Tracking
 – Abdulbaki Uzun, Mohamed Salem
End-to-End entity-body confidentiality and integrity for HTTP

Mathias Slawik, Dirk Thatmann
Topic 1: Entity-body confidentiality and integrity for HTTP
Topic 1: Entity-body confidentiality and integrity for HTTP
Topic 1: Entity-body confidentiality and integrity for HTTP

• Tasks:
 – Analyze state of the art technologies, such as TLS and HTTP
 – Discuss the Trusted Cloud Transfer Protocol (TCTP), newly devised by SNET
 – Broaden your knowledge of browser extension APIs and application server frameworks
 – Design, implement and evaluate TCTP software

• Requirements:
 – Proficiency in object oriented programming languages, such as Java, C++, C# or Ruby
 – Knowledge of web technologies, esp. HTTP
 – Basic comprehension of computer security, esp. TLS
 – Any implementation know-how regarding either browser extensions (e.g., Firefox, Chrome, Internet Explorer) or application server frameworks (e.g., Ruby on Rails, Spring MVC, Grails)
ComGreen Movement
Predictions

Sebastian Göndör, Abdulbaki Uzun
Topic 2: ComGreen Movement Predictions
Topic 2: ComGreen Movement Predictions
Topic 2: ComGreen Movement Predictions

• Tasks:
 – Develop a smartphone application, that is able to acquire contextual information from smartphones and other viable sources
 – Implement a server application that is able to collect and maintain the contextual data from smartphones and other viable sources.
 – Design and implement a movement forecast algorithm, which is able to determine the location of a user at a given time in the future.
 – Build a visualization, that shows the predicted path on a map (e.g. Google Maps or the OpenMobileNetwork)

• Requirements:
 – Knowledge of web technologies
 – Programming and Database skills
 – Experience with data analytics (Data mining / Big Data) and complex algorithms would be beneficial
 – Experience with mobile programming in Android would be beneficial
Topic 3: Location-based Authentication

Location-based Authentication System for Cloud Services using GeoXACML

Dirk Thatmann, Sebastian Zickau
Topic 3: Location-based Authentication

- **Location-based Access Control (LBAC)**
 - User can only use a service at certain locations, e.g. hospital premises, service is blocked at every other location
- **Determine Location (WLAN, 3G, GPS, etc.)**
- **Use policy language XACML (eXtensible Access Control Markup Language)**
 - Extension for location information (GeoXACML)
- **Define location area (e.g. TUB campus, hospital)**
- **Example Application** – (e.g. TRESOR RubyOnRails prototype)
- **Define policy points, i.e. Information (PIP), enforcement (PEP), decision (PDP), administration (PAP)**
- **Use Mobile Devices (e.g. Android phones)**
- **Implementation of prototype + Evaluation**
Topic 3: Location-based Authentication
Topic 3: Location-based Authentication

• Tasks
 – Getting familiar with (Geo)XACML
 – Defining test cases, scenarios and an GeoXACML architecture in the context of cloud services
 – Deal with mobile and stationary devices
 – Implementation of a prototype
 – Implementation of a mobile app which access the cloud service
 – Evaluation of the architecture

• Requirements
 – Analyses of state-of-the-art Technologies
 – (Java, XML) programming skills
 – (Android) mobile development experience
 – Interest in location based service / policies / mobile device / cloud computing development
 – Teamwork
 – Communicating in English (desirable)
Friend Recommendation

Content Sharing
Topic 4: Friend Recommendation and Content Sharing in DOSNs

<table>
<thead>
<tr>
<th>Research</th>
<th>Set up</th>
<th>Invent</th>
</tr>
</thead>
<tbody>
<tr>
<td>existing DOSNs</td>
<td>your own DOSN</td>
<td>algorithms for friend recommendation</td>
</tr>
<tr>
<td>existing technologies</td>
<td>easy to install</td>
<td>solutions for content sharing</td>
</tr>
<tr>
<td></td>
<td>easy to use</td>
<td></td>
</tr>
</tbody>
</table>
Context-aware Personal Assistant with Linked Open Data

Bersant Deva, Abdulbaki Uzun
Proprietary Approaches: Google Now & Siri
Topic 5: Context-aware Personal Assistant with Linked Open Data

• Tasks:
 – Get familiar with
 • Linked Data, Semantic Web
 • Context-aware services
 • Web services
 – Implement a personal assistant Android App
 – Implement an according Backend-System
 – Create test scenarios for different user locations
Topic 6: Semantic Platform for Context-aware Services
Linking Open Data Cloud

15.04.2013
Internet of Services - Project Introduction
The OpenMobileNetwork is a Live Crowdsourcing Platform for Semantic Context-aware Services built by following the principles of Linked Data.

- Ontologies expressed in RDF and RDF Schema describe mobile networks, their topologies and components (e.g., base stations, or WiFi access points).

- Utilizing this dataset in combination with interlinked information that is present in the LOD Cloud, new and innovative context-aware applications can be realized.
 - Semantic Location-based Services or Power Management in Mobile Networks.

Website: http://www.openmobilnenetwork.org/
Topic 6: Semantic Platform for Context-aware Services

Introduction

- Enhance the existing *Semantic Positioning System* by a *Platform* for realizing *Semantic Context-aware Services* including 3rd party functionality
- User defines locations of relevance on a user interface including user profiles, relations and places
 - Data is mapped onto *Linked Data* in the background
- Enhance the existing smartphone app by a context-aware service
 - Use Case: „Tell me whenever my daughter leaves school!“
Topic 6: Semantic Platform for Context-aware Services
Tasks and Requirements

• Tasks:
 – Research in the field of Linked Data, Context-aware Computing and Proactive Location-based Services
 – Develop a platform including a user interface for defining locations of relevance for the user and 3rd parties
 • Automatically map locations of relevance (e.g., place, user profile, relations, other context) to Linked Data
 • Extend state-of-the-art semantic user profiles with feature for Semantic Context-ware Services
 • Create standardized interface between the Positioning Enabler Platform and the OpenMobileNetwork
 – Extend our smartphone app by a context-aware service

• Requirements:
 – Interest in the field of Linked Data (RDF, Ontologies, SPARQL)
 – Interest in the field of Location-based Services
 – Java and/or Android Development
 – Java Application Server (J2EE, Tomcat)
Contact information

• Bersant Deva
 – bersant.deva@tu-berlin.de
• Sebastian Göndör
 – sebastian.goendoer@tu-berlin.de
• Mohamed Salem
 – mohamed.salem@telekom.de
• Mathias Slawik
 – mathias.slawik@tu-berlin.de
• Dirk Thatmann
 – d.thatmann@tu-berlin.de
• Abdulbaki Uzun
 – abdulbaki.uzun@telekom.de
• Sebastian Zickau
 – sebastian.zickau@tu-berlin.de